
管式爐在金屬硅化物(如TiSi、CoSi)形成中通過退火工藝促進金屬與硅的固相反應,典型溫度400℃-800℃,時間30-60分鐘,氣氛為氮氣或氬氣。以鈷硅化物為例,先在硅表面濺射50-100nm鈷膜,隨后在管式爐中進行兩步退火:第一步低溫(400℃)形成CoSi,第二步高溫(700℃)轉化為低阻CoSi,電阻率可降至15-20μΩcm。界面質量對硅化物性能至關重要。通過精確控制退火溫度和時間,可抑制有害副反應(如CoSi向CoSi轉化),并通過預氧化硅表面(生長2-5nmSiO)阻止金屬穿透。此外,采用快速熱退火(RTA)替代常規管式退火,可將退火時間縮短至10秒,明顯減少硅襯底中的自間隙原子擴散,降低漏電流風險。無錫第三代半導體管式爐擴散爐管式爐借熱輻射為半導體工藝供熱。

管式爐精確控制的氧化層厚度和質量,直接影響到蝕刻過程中掩蔽的效果。如果氧化層厚度不均勻或存在缺陷,可能會導致蝕刻過程中出現過刻蝕或蝕刻不足的情況,影響電路結構的精確性。同樣,擴散工藝形成的P-N結等結構,也需要在蝕刻過程中進行精確的保護和塑造。管式爐對擴散工藝參數的精確控制,確保了在蝕刻時能夠準確地去除不需要的材料,形成符合設計要求的精確電路結構。而且,由于管式爐能夠保證工藝的穩定性和一致性,使得每一片硅片在進入蝕刻工藝時都具有相似的初始條件,從而提高了蝕刻工藝的可重復性和產品的良品率,為半導體器件的大規模生產提供了有力支持。
現代管式爐采用PLC與工業計算機結合的控制系統,支持遠程監控和工藝配方管理。操作人員可通過圖形化界面(HMI)設置多段升溫曲線(如10段程序,精度±0.1℃),并實時查看溫度、壓力、氣體流量等參數。先進系統還集成人工智能算法,通過歷史數據優化工藝參數,例如在氧化工藝中自動調整氧氣流量以補償爐管老化帶來的溫度偏差。此外,系統支持電子簽名和審計追蹤功能,所有操作記錄(包括參數修改、故障報警)均加密存儲,滿足ISO21CFRPart11等法規要求。管式爐的自動化系統提升半導體工藝效率。

通過COMSOL等仿真工具可模擬管式爐內的溫度場、氣體流場和化學反應過程。例如,在LPCVD氮化硅工藝中,仿真顯示氣體入口處的湍流會導致邊緣晶圓薄膜厚度偏差(±5%),通過優化進氣口設計(采用多孔擴散板)可將均勻性提升至±2%。溫度場仿真還可預測晶圓邊緣與中心的溫差(ΔT<2℃),指導多溫區加熱控制策略。仿真結果可與實驗數據對比,建立工藝模型(如氧化層厚度與溫度的關系式),用于快速優化工藝參數。例如,通過仿真預測在950℃下氧化2小時可獲得300nmSiO,實際偏差<5%。高效冷冷卻系統,縮短設備冷卻時間,提升生產效率,了解更多!無錫6英寸管式爐真空合金爐
管式爐可通入多種氣體(氮氣、氫氣等),實現惰性或還原性氣氛下的化學反應。無錫6英寸管式爐真空合金爐


